Mode :

It is the most frequent /typical/ predominant value in the data. Hence it is preferable for most common size of shoes, readymade garment, family etc.

Mode is the value where frequency curve attains its peak. Hence it is possible to get more than one modal value for the distribution. Such distributions are known as bimodal or multimodal distributions

Mode for ungrouped data :

Mode is the value corresponding to the highest frequency.
Calculate mode for the following data

Size of Shoes	No. of shops
4	10
5	14
6	16
7	18
8	10
9	5

Mode = Value corresponding to highest frequency
$=$ Value corresponding to 18
Mode $=7$

Mode for grouped data :

$\mathrm{Z}=l_{1}+\frac{\left(f_{1}-f_{0}\right) *\left(l_{2}-l_{1}\right)}{2 f_{1}-f_{0}-f_{2}}$
Modal class is the class with highest frequency
f_{1} is the frequency of the modal class
f_{0} is the frequency of the previous class
f_{2} is the frequency of the next class
l_{1} is the lower limit of the modal class
l_{2} is the upper limit of the modal class
Make sure that the class intervals are of exclusive type.
Q. 1 Calculate mode for the following data

Sale in Rs	No. of Shops
$100-200$	12
$200-300$	21
$300-400$	27
$400-500$	13
$500-600$	7

Modal Class : 300-400
$\mathrm{Z}=l_{1}+\frac{\left(f_{1}-f_{0}\right) *\left(l_{2}-l_{1}\right)}{2 f_{1}-f_{0}-f_{2}}$
$=300+\frac{(27-21) *(400-300)}{2 * 27-21-13}$
$=300+\frac{6 * 100}{54-21-13}$
$=300+\frac{600}{20}=300+30=330$
Q. 2 Calculate mode for the following data

No. of calls	No. of hours
$7-12$	4
$12-17$	9
$17-22$	16
$22-27$	21
$27-32$	13
$32-37$	9

Modal Class : 22-27

$$
\begin{aligned}
\mathrm{Z} & =l_{1}+\frac{\left(f_{1}-f_{0}\right) *\left(l_{2}-l_{1}\right)}{2 f_{1}-f_{0}-f_{2}} \\
& =22+\frac{(21-16) *(27-22)}{2 * 21-16-13} \\
& =22+\frac{(5) *(5)}{42-16-13}
\end{aligned}
$$

$$
22+\frac{25}{13}=23.92
$$

Q. 3 Calculate modal wages for the following data

Weekly wages	No. of workers
$500-599$	2
$600-699$	8
$700-799$	12
$800-899$	16
$900-999$	13
$1000-1099$	6
$1100-1199$	3

Here inclusive intervals have to be converted into exclusive type

Weekly wages	No. of workers
$499 \cdot 5-599 \cdot 5$	2
$599 \cdot 5-699 \cdot 5$	8
$699 \cdot 5-799 \cdot 5$	12
$799 \cdot 5-899 \cdot 5$	16
$899 \cdot 5-999 \cdot 5$	13
$999 \cdot 5-1099 \cdot 5$	6
$1099 \cdot 5-1199 \cdot 5$	3

Modal Class : 799.5-899.5

$$
\begin{aligned}
& \mathrm{Z}=l_{1}+\frac{\left(f_{1}-f_{0}\right) *\left(l_{2}-l_{1}\right)}{2 f_{1}-f_{0}-f_{2}} \\
& =799.5+\frac{(16-12) *(899.5-799.5)}{(2 * 16-12-13)} \\
& =799.5+\frac{(4) *(100)}{(32-12-13)} \\
& =799.5+\frac{400}{7}=799.5+57.142=856.642
\end{aligned}
$$

Estimation of Mode using Histogram

Q1. Locate mode for the following data

Daily Wages	No. of workers
$0-100$	9
$100-200$	18
$200-300$	35
$300-400$	25
$400-500$	15
$500-600$	10

Mode $=260$
Modal Class : 200-300
$\mathrm{Z}=l_{1}+\frac{\left(f_{1}-f_{0}\right) *\left(l_{2}-l_{1}\right)}{2 f_{1}-f_{0}-f_{2}}$
$=200+\frac{(35-18) *(300-200)}{(2 * 35-18-25)}$
$=200+\frac{(17) *(100)}{(70-18-25)}$
$=200+\frac{1700}{27}=200+62.96=262.96$
Q. 1 Locate mode for the following data

Sale in Rs	No. of Shops
$100-200$	12
$200-300$	21
$300-400$	27
$400-500$	13
$500-600$	7

Mode $=330$

Modal Class : 300-400

$$
\begin{aligned}
\mathrm{Z} & =l_{1}+\frac{\left(f_{1}-f_{0}\right) *\left(l_{2}-l_{1}\right)}{2 f_{1}-f_{0}-f_{2}} \\
& =300+\frac{(27-21) *(400-300)}{2 * 27-21-13} \\
& =300+\frac{6 * 100}{54-21-13} \\
& =300+\frac{600}{20}=300+30=330
\end{aligned}
$$

Median :

Median is a positional average. It divides the data into two equal parts, when the data is arranged in ascending or descending order of magnitude. It is the value such that no. of observations above it is equal to no. of observations below it.

Median for ungrouped data:
Steps:

1. Arrange the observations in ascending or descending order.
2. Median = value of $\frac{n+1}{2}$ th observation if n is odd
3. $=$ Average of $\left(\frac{n}{2}\right)$ th $\&\left(\frac{n}{2}+1\right)$ th observations if n is even

Median $=\frac{\left(\frac{n}{2}\right) \text { th observation }+\left(\frac{n}{2}+1\right) \text { th observation }}{2} \quad$ if n is even

Q1. Calculate Median for the following data
17, 18, 17, 20, 21, 19, 18, 24, 26
$\mathrm{n}=9$, odd
Arrange the observations in ascending order.

$$
17,17,18,18,19,20,21,24,26
$$

$$
\begin{aligned}
\text { Median } & =\text { value of } \frac{n+1}{2} \text { th observation } \\
& =\text { value of } \frac{9+1}{2} \text { th observation }=\text { value of } 5^{\text {th }} \text { observation }=19
\end{aligned}
$$

Q2. Calculate Median for the following data
$30,43,65,35,50,45,55,48,58,38$
$\mathrm{n}=10$, even
Arrange the observations in ascending order.
$30,35,38,43,45,48,50,55,58,65$
Median $=\frac{\left(\frac{10}{2}\right) \text { th observation }+\left(\frac{10}{2}+1\right) \text { th observation }}{2}$

$$
=\frac{(5) \text { th observation }+(6) \text { th observation }}{2}=\frac{45+48}{2}=46.5
$$

Q3. Calculate Median for the following data

X	f	lcf
15	3	3
17	5	8
19	6	14
22	8	22
24	5	27
26	3	30

$\mathrm{N}=30$, Even

$$
\begin{aligned}
\text { Median } & =\frac{\left(\frac{30}{2}\right) \text { th observation }+\left(\frac{30}{2}+1\right) \text { th observation }}{2} \\
& =\frac{(15) \text { th observation }+(16) \text { th observation }}{2}=\frac{22+22}{2}=22
\end{aligned}
$$

Q4. Calculate Median for the following data

x	f	lcf
5	3	3
10	7	10
15	13	23
20	17	40
25	12	52
30	7	59

N = 59, Odd
Median = value of $\frac{n+1}{2}$ th observation

$$
\begin{aligned}
& =\text { value of } \frac{59+1}{2} \text { th observation } \\
& =\text { value of } 30^{\text {th }} \text { observation }=20
\end{aligned}
$$

Median for grouped data:

$\mathrm{M}=l_{1}+\frac{\left(\frac{N}{2}-c f\right) *\left(l_{2}-l_{1}\right)}{f}$
Median class is the class containing $\mathrm{N} / 2$ th observation N is the total number of observations l_{1} is the lower limit of the median class l_{2} is the upper limit of the median class $c f$ is the cumulative frequency of the pre median class Make sure that the class intervals are of exclusive type.

Q1. Calculate median for the following data

Age	No. of persons	l.c.f
$10-20$	5	5
$20-30$	15	20
$30-40$	20	40
$40-50$	35	75
$50-60$	15	90
$60-70$	10	100

Median class is the class containing $\mathrm{N} / 2$ th $=50^{\text {th }}$ observation
Median class is 40-50

$$
\begin{aligned}
\mathrm{M} & =l_{1}+\frac{\left(\frac{N}{2}-c f\right) *\left(l_{2}-l_{1}\right)}{f} \\
& =40+\frac{\left(\frac{100}{2}-40\right) *(50-40)}{35} \\
& =40+\frac{(50-40) *(50-40)}{35} \\
& =40+\frac{(10) *(10)}{35}=40+2.857=42.857
\end{aligned}
$$

Q2. Calculate median for the following data

Saving in Rs.	No. of employees	l.c.f
$0-400$	8	8
$400-800$	10	18
$800-1200$	12	30
$1200-1600$	6	36
$1600-2000$	4	40

Median class is the class containing $\mathrm{N} / 2$ th $=20^{\text {th }}$ observation
Median class is 800-1200

$$
\begin{aligned}
\mathrm{M} & =l_{1}+\frac{\left(\frac{N}{2}-c f\right) *\left(l_{2}-l_{1}\right)}{f} \\
& =800+\frac{\left(\frac{40}{2}-18\right) *(1200-800)}{12} \\
& =800+\frac{(20-18) *(400)}{12} \\
& =800+\frac{800}{12}=800+66.66=866.66
\end{aligned}
$$

Q3. Calculate median for the following data

Life in hrs.	No. of electric bulbs	l.c.f
$500-1000$	3	3
$1000-1500$	8	11
$1500-2000$	14	25
$2000-2500$	18	43
$2500-3000$	10	53
$3000-3500$	5	58
$3500-4000$	2	60

Median class is the class containing $\mathrm{N} / 2$ th $=30^{\text {th }}$ observation
Median class is 2000-2500

$$
\begin{aligned}
\mathrm{M} & =l_{1}+\frac{\left(\frac{N}{2}-c f\right) *\left(l_{2}-l_{1}\right)}{f} \\
& =2000+\frac{\left(\frac{60}{2}-25\right) *(2500-2000)}{18} \\
& =2000+\frac{(30-25) *(500)}{18} \\
& =2000+\frac{2500}{18}=2000+138.88=2138.88
\end{aligned}
$$

Q4. Calculate median for the following data

Intervals	frequency
$1-99$	7
$100-199$	13
$200-299$	25
$300-399$	40
$400-499$	20
$500-599$	15

Here inclusive intervals have to be converted into exclusive type

Intervals	frequency	l.c.f
$0.5-99 \cdot 5$	7	7
$99 \cdot 5-199 \cdot 5$	13	20
$199 \cdot 5-299 \cdot 5$	25	45
$299 \cdot 5-399 \cdot 5$	40	85
$399 \cdot 5-499 \cdot 5$	20	105
$499 \cdot 5-599.5$	15	120

Median class is the class containing $\mathrm{N} / 2 \mathrm{th}=6 \mathrm{o}^{\text {th }}$ observation Median class is 299.5-399.5
$\mathrm{M}=l_{1}+\frac{\left(\frac{N}{2}-c f\right) *\left(l_{2}-l_{1}\right)}{f}$
$=299.5+\frac{\left(\frac{100}{2}-45\right) *(399.5-299.5)}{40}$
$=299.5+\frac{(60-45) *(100)}{40}$
$=299 \cdot 5+\frac{1500}{40}=299 \cdot 5+37 \cdot 5=337$

Locating Median using Ogive Curve:

Wages	No. of workers	lcf
$0-5$	5	5
$5-10$	7	12
$10-15$	18	30
$15-20$	30	60
$20-25$	20	80

Median $=17$

Median class is $15-20$
$\mathrm{M}=l_{1}+\frac{\left(\frac{N}{2}-c f\right) *\left(l_{2}-l_{1}\right)}{f}$
$=15+\frac{\left(\frac{80}{2}-30\right) *(20-15)}{30}$
$=15+\frac{(40-30) *(5)}{30}$
$=15+\frac{50}{30}=15+1.66=16.66$

Locating Median using Ogive Curve:

Age	No. of persons	lcf
Below 35	20	20
$35-50$	18	38
$50-65$	32	70
$65-80$	18	88
Above 8o	12	100

Median class is $50-65$

$$
\begin{aligned}
M & =l_{1}+\frac{\left(\frac{N}{2}-c f\right) *\left(l_{2}-l_{1}\right)}{f} \\
& =50+\frac{\left(\frac{100}{2}-38\right) *(65-50)}{32} \\
& =50+\frac{(50-38) *(15)}{32} \\
& =50+\frac{180}{32}=50+5.625=55.625
\end{aligned}
$$

Merits of Arithmetic Mean

- It is easy to understand , simple to calculate.
- It is rigidly defined to get unique value.
- It is based on all observations.
- It is capable of further mathematical treatment.

Demerits of Arithmetic Mean

- It can not be calculated if some values are missing
- It can not be calculated for open ended intervals
- It may not be actually present in the data
- It is affected by extreme values
- Sometimes it gives absurd values

Merits of Mode

- It is easy to understand , simple to calculate.
- It is the most typical value.
- It can be used for even qualitative data.
- It can be calculated for even open ended intervals
- It can be located graphically.

Demerits of Mode

- _It is not rigidly defined to give unique value, hence bimodalor multimodal distributions are possible.
- It is not based on all observations.
- It is affected by sampling fluctuations.
- It is not capable of further mathematical treatment.

Merits of Median

- It is easy to understand , simple to calculate.
- It exists in the data most of the times.
- It can be used for even qualitative data.
- It can be calculated for even open ended intervals
- It can be calculated even if some values are missing.
- It can be located graphically.

Demerits of Median

- It is not based on all observations.
- It is affected by sampling fluctuations.
- It is not capable of further mathematical treatment.
- Its calculation requires prior arrangement of data in ascending or descending order.

